Goto Chapter: Top 1 2 3 4 5 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[AK01] Ashikhmin, A. and Knill, E., Nonbinary quantum stabilizer codes, IEEE Trans. Info. Th., 47 (7) (2001), 3065-3072.

[CG90] Coffey, J. T. and Goodman, R. M., The complexity of information set decoding, IEEE Trans. Info. Theory, 36 (5) (1990), 1031 -1037.

[CGLN21] Cu\'ellar, M. P., G\'omez-Torrecillas, J., Lobillo, F. J. and Navarro, G., Genetic algorithms with permutation-based representation for computing the distance of linear codes, Swarm and Evolutionary Computation, 60 (2021), 100797.

[CL54] Chernoff, H. and Lehmann, E. L., The Use of Maximum Likelihood Estimates in \(\chi^2\) Tests for Goodness of Fit, The Annals of Mathematical Statistics, Institute of Mathematical Statistics, 25 (3) (1954), 579 -- 586.

[Cra99] Cram\'er, H., Mathematical Methods of Statistics (PMS-9), Princeton University Press (1999).

[CRSS98] Calderbank, A. R., Rains, E. M., Shor, P. M. and Sloane, N. J. A., Quantum error correction via codes over GF(4), IEEE Trans. Info. Theory, 44 (1998), 1369-1387.

[DKP15] Dumer, I., Kovalev, A. A. and Pryadko, L. P., Thresholds for correcting errors, erasures, and faulty syndrome measurements in degenerate quantum codes, Phys. Rev. Lett., American Physical Society, 115 (2015), 050502.

[DKP17] Dumer, I., Kovalev, A. A. and Pryadko, L. P., Distance Verification for Classical and Quantum LDPC Codes, IEEE Trans. Inf. Th., 63 (7) (2017), 4675-4686.

[Got97] Gottesman, D., Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, Caltech (1997).

[Got14] Gottesman, D., Stabilizer codes with prime power qudits (2014)
(Invited talk at QEC 2014 (ETH Zurich)).

[KKKS06] Ketkar, A., Klappenecker, A., Kumar, S. and Sarvepalli, P. K., Nonbinary Stabilizer Codes Over Finite Fields, {IEEE} Trans. Info. Th., 52 (11) (2006), 4892-4914.

[Kru89] Kruk, E. A., Decoding Complexity Bound for Linear Block Codes, Probl. Peredachi Inf., 25 (3) (1989), 103-107
((In Russian)).

[Leo88] Leon, J. S., A probabilistic algorithm for computing minimum weights of large error-correcting codes, IEEE Trans. Info. Theory, 34 (5) (1988), 1354 -1359.

[L\t21] L\"ubeck, F., Conway polynomials for finite fields (2021)
([Downloaded on 2022-02-19]).

[NC00] Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Infomation, Cambridge Unive. Press, Cambridge, MA (2000).

[Ste53] Steel, R. G. D., Relation Between Poisson and Multinomial Distributions, Biometrics Unit Technical Reports, Cornell University (BU-39-M) (1953).

[ZP20] Zeng, W. and Pryadko, L. P., Minimal distances for certain quantum product codes and tensor products of chain complexes, Phys. Rev. A, 102 (2020), 062402.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML